首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9746篇
  免费   764篇
  国内免费   761篇
  2024年   3篇
  2023年   119篇
  2022年   186篇
  2021年   573篇
  2020年   355篇
  2019年   470篇
  2018年   466篇
  2017年   318篇
  2016年   453篇
  2015年   697篇
  2014年   807篇
  2013年   802篇
  2012年   934篇
  2011年   864篇
  2010年   519篇
  2009年   472篇
  2008年   509篇
  2007年   426篇
  2006年   336篇
  2005年   278篇
  2004年   243篇
  2003年   244篇
  2002年   201篇
  2001年   153篇
  2000年   117篇
  1999年   129篇
  1998年   80篇
  1997年   77篇
  1996年   66篇
  1995年   56篇
  1994年   39篇
  1993年   32篇
  1992年   39篇
  1991年   25篇
  1990年   21篇
  1989年   39篇
  1988年   21篇
  1987年   8篇
  1986年   10篇
  1985年   25篇
  1984年   8篇
  1983年   10篇
  1982年   18篇
  1981年   5篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
31.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
32.
33.
34.
In China, hepatitis E virus (HEV) is prevalent and causes disease, but its epidemiological profile is not well understood. We used a commercial enzyme-linked immunosorbent assay to detect total antibodies to hepatitis E virus in 15,862 serum samples collected during the Third National Viral Hepatitis Prevalence Survey. The results were analyzed to calculate estimates of HEV seroprevalence and to examine the effects of some putative risk factors. The seroprevalence of HEV in the general Chinese population during the period from 2005 through 2006 was 23.46% (95% confidence interval [CI], 18.41%–28.50%). The farming population, the age group of 15–60 year olds, and those living in the Midwest or Mideast region and in Xinjiang province had the highest seroprevalence estimates. The prevalence of HEV is high in China. The seroprevalence rate of HEV shows an unbalanced distribution among areas with different geographic location and economic development levels. The characteristics of the distribution associated may be due to the route of HEV transmission (via contaminated water or animal reservoirs). Within the same region, the seroprevalence of HEV is generally increased with age.  相似文献   
35.
Mosquito viruses cause unpredictable outbreaks of disease. Recently, several unassigned viruses isolated from mosquitoes, including the Omono River virus (OmRV), were identified as totivirus-like viruses, with features similar to those of the Totiviridae family. Most reported members of this family infect fungi or protozoans and lack an extracellular life cycle stage. Here, we identified a new strain of OmRV and determined high-resolution structures for this virus using single-particle cryo-electron microscopy. The structures feature an unexpected protrusion at the five-fold vertex of the capsid. Disassociation of the protrusion could result in several conformational changes in the major capsid. All these structures, together with some biological results, suggest the protrusions’ associations with the extracellular transmission of OmRV.  相似文献   
36.
SAX-3, a receptor for Slit in C. elegans, is well characterized for its function in axonal development. However, the mechanism that regulates the membrane localization of SAX-3 and the role of SAX-3 in axon outgrowth are still elusive. Here we show that SAX-3::GFP caused ectopic axon outgrowth, which could be suppressed by the loss-of-function mutation in unc-73 (a guanine nucleotide exchange factor for small GTPases) and unc-115 (an actin binding protein), suggesting that they might act downstream of SAX-3 in axon outgrowth. We also examined genes related to axon development for their possible involvement in the subcellular localization of SAX-3. We found the unc-51 mutants appeared to accumulate SAX-3::GFP in the neuronal cell body of the posterior deirid (PDE) neuron, indicating that UNC-51 might play a role in SAX-3 membrane localization. Furthermore, we demonstrate that the N-terminal signal sequence and the transmembrane domain are essential for the subcellular localization of SAX-3 in the PDE neurons.  相似文献   
37.
38.
Gastric cancer (GC) is the second most common cause of cancer death worldwide but could be more curable if diagnosed at an earlier stage. At present, the capability to predict the efficaciousness of molecular diagnosis for GC for each patient remains elusive. The purpose of this study was to identify tumor biomarkers through systems analysis of multigene predictors exploiting the available data resource. In this study, we investigated the top 10% overexpressed genes in GC from five data sets of the Oncomine platform, with 265 GC samples versus 174 normal gastric mucosa samples. Sixteen candidate genes were identified as predictors of GC, of which 14 genes were verified through the comparison of expression levels in specimens from normal (chronic gastritis, 21 samples) and GC groups (38 samples). In addition, unique molecular portraits of diffuse adenocarcinoma (DA), intestinal adenocarcinoma (IA), and mixed adenocarcinoma (MA) were studied through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, where DA showed higher extracellular matrix alteration while IA and MA showed higher cell-cycle alteration than other types. We also found that the elevated expressions of genes during GC progression were independent of gene mutations, and high core-binding factor subunit β expression is correlated with a high overall survival rate in GC patients. Our research may provide an efficient clinical diagnosis of GC at an early stage with high accuracy and thus help improve the overall survival rate through early therapeutic interventions.  相似文献   
39.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   
40.
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations in humans and play a major role in the genetics of human phenotype variation and the genetic basis of human complex diseases. Recently, there is considerable interest in understanding the possible role of the CYP11B2 gene with corticosterone methyl oxidase deficiency, primary aldosteronism, and cardio-cerebro-vascular diseases. Hence, the elucidation of the function and molecular dynamic behavior of CYP11B2 mutations is crucial in current genomics. In this study, we investigated the pathogenic effect of 51 nsSNPs and 26 UTR SNPs in the CYP11B2 gene through computational platforms. Using a combination of SIFT, PolyPhen, I-Mutant Suite, and ConSurf server, four nsSNPs (F487V, V129M, T498A, and V403E) were identified to potentially affect the structure, function, and activity of the CYP11B2 protein. Furthermore, molecular dynamics simulation and structure analyses also confirmed the impact of these nsSNPs on the stability and secondary properties of the CYP11B2 protein. Additionally, utilizing the UTRscan, MirSNP, PolymiRTS and miRNASNP, three SNPs in the 3′UTR region were predicted to exhibit a pattern change in the upstream open reading frames (uORF), and eight microRNA binding sites were found to be highly affected due to 3′UTR SNPs. This cataloguing of deleterious SNPs is essential for narrowing down the number of CYP11B2 mutations to be screened in genetic association studies and for a better understanding of the functional and structural aspects of the CYP11B2 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号